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r 1. 1986 to FehrWLyC 38 1987. 

The major research effort of the Principal Investigator during the indicated period again 

has been devoted to a study of vortex breakdown and this work is described in pa r t  I. Some 

work on spiral flows is reported on in part  I1 and some comments on recent publications are  

included in par t  111. 

I. W a v e  k o r i e . 9  or rmrtex brealcdnrun . The  investigation has  focused primarily on wave 

theories of vortex breakdown in a tube such as those in [l; 2; 6; 11; 121. The approach described 

below is not necessarily restricted to weakly nonlinear waves so t h a t  i t  can be used to study 

"large" vortex breakdowns. A more formal approach was described in the last Progress Report, 

March 1, 1986 to August 31, 1986, and the approach there was compared with t h a t  of Benjamin 

in (1; 2). Such formal approaches lead to qualitative results about solitary waves, however, they 

do  not seem to lead t o  either a description of the actual mechanism of vortex breakdown or the 

determination of the parameter values at which vortex breakdown occurs. Perhaps a better 

setting for a more detailed investigation is t h a t  described below, a setting which involves 

dynamical systems and bifurcation of homcc!inic and he te roch ic  orbits in infinite-dimcnsional 

spaces. 

We consider as in [l; 21 a swirl velocity, V, and a n  axial velocity, W, depending only on r, 

where r is the normalized radial coordinate of the tube, Le., 0 < r < 1 and -CO < x < 00. 

Such V and W determine a primary cylindrical flow with stream function $,,. The determi- 

nation of axisymmetric inviscid flows bifurcating from the primary flow leads to the study of a 

system of ordinary differential equations of the form 
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where the coefficients ai, bij and cij depend upon a real parameter X, the terms Ai(a,P,X) 

are "higher order" in some appropriate sense, and ct = ,8 = 0 corresponds to the given primary 

flow. The  parameter X varies near A,, the value of X for which the primary flow is "critical" 

(e.g., see [l; 2; 111); if X < X, the primary Row is "supercritical" and if X > X,, then the pri- 

mary flow is "subcritical". 

E.g., if W = p is a uniform axial flow and if V is of the form Y(r) = 7 V,(r), then 

X = z. Moreover, if I' = rVo(r) is the circulation and if y = - r2, then the determination of 1 
c1 2 

disturbance flows leads t o  the study of the nonlinear elliptic equation (eg., see [l; 21) 

L??k + 2y = -XB(y-4)4, 0 < y < 1, --oo < x < 0 0 ,  
8x2 8 Y 2  

r' where B(s) = =. The key observations now are  t h a t  if one writes (2) as a first order 
S 

system with u = 4  and v = &?! then (a) the resultant system is "reversible" and (b) for X 
a x  

near A,, the spectrum of the linearized problem has two real eigenvalues for X < X, t h a t  pass 

through 0 at X = X, and become imaginary for X > A,. Thus, standard splitting methods 

from bifurcation theory (e.g., see [3]) can be used to derive a system of the form (1) in which for 

convenience the dependence upon a third infinite-dimensional component has been incorporated 

as pa r t  of the "higher order" terms. Systems of the form (1) can be derived in this way for a 

wide class of swirl velocities, V, and axial velocities, W. 

By introducing various scalings and solving (1) in these special cases, one obtains a variety 

of solutions including homoclinic and heteroclinic orbits. Since in the setting of dynamical 
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systems homoclinic orbits may be considered as solitary waves, such a n  approach yields, in par- 

ticular, the formal results in [2; 111 on solitary waves. E.g., by solving the system 

(3) 
d a  - = aP + O( IX-X,I) dx 

dx = b a  + c a 2  + O( IX-X,I) , 

where a > 0, b > 0 and c # O  are real constants, one sees tha t ,  if X < A,, then 

(a1,f?) = ( 0 , O )  is a saddle point connected t o  itself by a separatrix. Thus, there is a solitary wave 

bifurcating "to the left" at  X = A, from the primary flow. 

A more interesting situation tha t  seems t o  provide a mechanism for describing "large" vor- 

tex breakdowns is described by the scaling leading to the system 

- + O((X-X,I) , d a  
dx 

@ = ba + ca2  + da3  + O(lX-X,l) , 
dx 

-- (4) 

where a, b, c and d are  constants. One now can show t h a t  for certain values of X there are 

two saddle points of (4) connected t o  each other by trajectories; since one of tthe sntldle points 

corresponds to (O,O), i.e., the primary flow, we have the possibility of "large" amplitude wave- 

like transition solutions between the primary flow and a second s t a t e  of the physical system. 

The existence of such "large" amplitude transition solutions would remove one of the basic 

objections to the weakly nonlinear wave theories in [l; 2; 111, namely it was postulated in [l; 21 

t h a t  certain large amplitude transition waves of unknown structure would have t o  be present in 

the physical system but there was no explanation given as to how "small" perturbations might 

lead to "large" amplitude transition solutions. 

T h e  qualitative results described above depend upon various generic propert'ies of the 

coefficients in (I), (3) or (4) and at present the investigator has not been able t o  verify such 
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properties except in the case of (3). Work continues t o  determine, in particular, the coefficients 

in (4) and to develop a theory of "large" amplitude transition solutions. 

11. &a1 &ks in roti&&hus . The problem of rotating plane Couette flow has been 

solved by means of the structure parameter approach and the final version of the paper [lo] is 

being prepared (with G.H. Knightly). If one uses the set  up described in [7, $51 ff.], then the 

appropriate structure parameter is proportional t o  sin(X-$), where s is the spiral angle of 

the basic flow and 1c, is the spiral angle of the disturbance flow. Using such a structure param- 

eter one can show the somewhat surprising result t ha t  the problem has the same operator for- 

mulation as the much simpler problem of combined Couette-Poiseuille channel flow treated in 

[9]. The results obtained for plane Couette flow justify many of the formal calculations in [7] 

and apparently provide the first detailed bifurcation results for viscous spiral flows; in particu- 

lar, such results show t h a t  a vanishingly small axial shear would be sufficient to destabilize a 

(pure) swirling flow, a result obtained previously in [13] by means of a formal inviscid analysis. 

. .  111. PllhlzcatzonR . The papers [SI and [9] are  now in press and the paper [I41 on the Taylor 

problem for "short" cylinders has been accepted for publication. The qualitative analytical 

results in [14] seem to complement the striking numerical results in [4; 51. E.g., what we have 

called a stable 1-cell flow in [14] actually has a "weak" %cell component as well and this is in 

close agreement with the single-cell flow shown in [4, Figure 4(c)] except t ha t  the streamline 

patterns are, of course, determined in detail in [4]. On the other hand, some of the qualitative 

results in [14], such as the role of the stable (1+2)-cell flow and the reinstatement of the !?-cell 

flow as a stable stationary flow, do not seem to be obtained directly in the detailcd numerical 

investigation in [4]. Roughly speaking, only about one-half of the qualitative solutions obtained 

in [14] appear to be determined at present by the numerical methods in [4]. 
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